'

Alder Lake Deep Dive - Intel promises a 19% IPC increase with their Performance Cores

Alder Lake will be released later this year

Alder Lake Deep Dive - Intel promises a 19% IPC increase with their Performance Cores

Alder Lake Deep Dive - Intel promises a 19% IPC increase with their Performance Cores

At their 2021 Architecture Day, Intel has dived deep into their upcoming Alder Lake processors, detailing the hybrid CPU architecture that will power the company's 12th generation of Core processors. 

Intel's Alder Lake CPU designs will be utilising two new core designs, utilising a new Performance-core (previously Golden Cove) architecture to deliver high clock speeds, low latencies, and high levels of single-threaded performance, and new Efficient-cores (previously called Gracemont) to enable highly scalable levels of multi-threaded performance while utilising minimal amounts of power.

Intel Thread Director

To ensure that their new Alder Lake Hybrid x86 designs operate at peak levels of efficiency, Intel has created a new hardware/software feature called "Thread Director" to ensure that all workloads are optimally spread out amongst Intel's Performance cores and Efficient cores. This feature will allow Intel to mitigate the downsides of prior hybrid architecture x86 processors, maximising the performance and efficiency of Alder Lake.     

Intel has confirmed that they have been working with Microsoft on Windows 11 to ensure that hybrid x86 CPU architectures are supported. As such, Intel will be a major driver for Windows 11 adoption, as Windows 11 is required to maximise the performance of Intel's latest processors. 

We have discussed Intel's Thread Director in more detail here

Alder Lake Deep Dive - Intel promises a 19% IPC increase with their Performance Cores  

Performance x86 Core Architecture

With their performance-oriented Golden Cove CPU cores, Intel's planning to deliver their users a dramatic performance uplift with a wider front-end, deeper registers, improved branch prediction and optimised cache solutions. 

When compared with today's Rocket Lake processors, Intel's pledging to deliver their users a significant IPC uplift, building upon the company's existing improvements with Tiger Lake and Rocket Lake. Alder Lake's performance cores should deliver significant performance improvements over Intel's older Comet Lake and older Skylake-series CPU core designs. 

     Intel’s new Performance-core microarchitecture, previously code-named “Golden Cove,” is designed for speed and pushes the limits of low latency and single-threaded application performance. Workloads are growing in their code footprint and demand more execution capabilities. Datasets are also massively growing along with data bandwidth requirements. Intel’s new Performance-core microarchitecture provides a significant boost in general purpose performance and better support for large code footprint applications.

The Performance-core features a wider, deeper and smarter architecture:

• Wider: six decoders (up from four); eight-wide µop cache (up from six); six allocation (up from five); 12 execution ports (up from 10)
• Deeper: Bigger register files; bigger physical register files; deeper re-order buffer with 512 entry
• Smarter: Improved branch prediction accuracy; reduced effective L1 latency; full write predictive bandwidth optimizations in L2


Alder Lake Deep Dive - Intel promises a 19% IPC increase with their Performance Cores
  

19% IPC increase? 

Across a series of general-purpose performance tests, Intel's promising an average IPC increase of 19% with their Alder Lake CPU cores. Remember that this listed IPC increase is an average, which means that in some applications, Alder Lake will deliver significantly lower and significantly higher performance improvements. 

Based on Intel's chart below, expect a 19% performance advantage on average, no performance increase at worst and up to a 60% performance boost in rare circumstances. 

     The Performance-core is the highest performing CPU core Intel has ever built and pushes the limits of low latency and single-threaded application performance with:

• A Geomean improvement of ~19% across a wide range of workloads over current 11th Gen Intel Core processor architecture (Cypress Cove) at ISO frequency for general purpose performance
• Exposure for more parallelism and an increase in execution parallelism
• Intel Advanced Matrix Extensions, the next-generation, built-in AI acceleration advancement, for deep learning inference and training performance. It includes dedicated hardware and new instruction set architecture to perform matrix multiplication operations significantly faster
• Reduced latency and increased support for large data and large code footprint applications


Alder Lake Deep Dive - Intel promises a 19% IPC increase with their Performance Cores  
Efficient-Core

Intel's power-efficient cores are designed to do two things, deliver a lot of multi-threaded performance while consuming little power and deliver high core counts while using minimal die area. Intel's block diagrams show that the company can fit around four Efficient cores within the same die area as a larger high-performance core. This allows Intel to deliver more multi-threaded performance while efficiently using die space and power, which is great news for Intel. 

Performance-wise, Intel says that its efficient cores are more powerful and power-efficient than their Skylake series cores. They can deliver 40% more performance per core while consuming the same power or the same performance while consuming 40% less power. Given the performance of Intel's Skylake series cores, these are not bad results from Intel, especially when these cores won't be doing the heavy lifting for Alder Lake.  


     Efficient-core

Intel’s new Efficient-core microarchitecture, previously code-named “Gracemont,” is designed for throughput efficiency, enabling scalable multithreaded performance for modern multitasking. This is Intel’s most efficient x86 microarchitecture with an aggressive silicon area target so that multicore workloads can scale out with the number of cores. It also delivers a wide frequency range. The microarchitecture and focused design effort allow Efficient-core to run at low voltage to reduce overall power consumption, while creating the power headroom to operate at higher frequencies. This allows Efficient-core to ramp up performance for more demanding workloads.

Efficient-core utilizes a variety of technical advancements to prioritize workloads without being wasteful with processing power and to directly enhance performance with features that improve instruction per cycle (IPC), including:

• 5,000 entry branch target cache that results in more accurate branch prediction
• 64 kilobyte instruction cache to keep useful instructions close without expending memory subsystem power
• Intel’s first on-demand instruction length decoder that generates pre-decode information
• Intel’s clustered out-of-order decoder that enables decoding up to six instructions per cycle while maintaining energy efficiency
• A wide back end with five-wide allocation and eight-wide retire, 256 entry out-of-order window and 17 execution ports
• Robust security features that support Intel control-flow enforcement technology and Intel virtualization technology redirection protection
• The implementation of the AVX ISA, along with new extensions to support integer artificial intelligence (AI) operations

Compared with the Skylake CPU core, Intel’s most prolific central processing unit (CPU) microarchitecture, in single-thread performance, the Efficient-core achieves 40% more performance at the same power or delivers the same performance while consuming less than 40% of the power1 . For throughput performance, four Efficient-cores offer 80% more performance while still consuming less power than two Skylake cores running four threads or the same throughput performance while consuming 80% less power.


Alder Lake Deep Dive - Intel promises a 19% IPC increase with their Performance Cores


So far, Intel has revealed three Alder Lake CPU dies, one focused on desktop performance, another focused on the mobile market, and another that targets ultra-mobile devices like Ultrabooks. 

All of these CPU designs use the same building blocks, offering users the same Performance Cores, Efficient Cores, Xe graphics, and other functional blocks. 


Alder Lake Deep Dive - Intel promises a 19% IPC increase with their Performance Cores
  

We can see below that Intel's desktop model features eight performance cores and eight efficient cores, while Intel's mobile model sheds two performance cores in favour of a larger integrated Xe graphics solution. Intel's smaller Ultra Mobile ship sheds all but two performance cores to minimise the processor's die size and maximise the CPU's use of efficient cores. 

Alder Lake is a top-to-bottom solution for the consumer PC market, delivering high performance levels for desktop users while making clever power/efficiency tradeoffs to cater to specific areas of the mobile market. 


Alder Lake Deep Dive - Intel promises a 19% IPC increase with their Performance Cores
  

Intel's desktop Alder Lake processors will ship later this year with support for DDR5 memory, PCIe 5.0 connectivity, WiFi 6E support and Thunderbolt 4. 

You can join the discussion on Intel's Alder Lake hybrid CPU architecture on the OC3D Forums


Alder Lake Deep Dive - Intel promises a 19% IPC increase with their Performance Cores  

«Prev 1 Next»

Most Recent Comments

21-08-2021, 10:54:10

AngryGoldfish
Excellent writeup.Quote

21-08-2021, 14:05:52

NeverBackDown
Lots of improvements it seems. Only took 10 years.Quote

24-08-2021, 01:21:18

Tom Sunday
I don't really care about either AMD or INTEL coming out with more powerful or refreshed desktop CPU chips. They have no value for me. Per Gartner desktop PC shipments have been dropping steadily from 157 million shipped worldwide in 2010 to just 79 million in 2020. Any PC growth at all in 2020 was strictly based on the robust mobile PC market, with "mobile PCs" showing a 49% growth.

NVIDIA it seems puts no real value on add-in PC desktop type GPU's either. It's more money in their pockets to overwhelmingly produce automotive, cellular, consumer appliances, router and laptop chips which have a market share of over 90%. This is what people really need, want and can't do without. A recent 'Nikkei Asia' report indicated: "As to NVIDIA 98% of their customers would never buy any type of 'discrete' GPU unless its baked into the MB."

For the better part of a decade, for me it has always been a Alienware laptop all of the time. Or using my company laptop at same time.Occasionally I started working from the desktop PC that had been gathering dust in my home office. No thank you.Then recently I purchased a premium 4K chromebook for further easy use in my kitchen, garden and prolonged waiting at the DMV. I am by nature a very lazy person and want instant convenience,100% portability and availability. I am confident that mobiles will continue to be the preferred computing method for the masses. Working from a physical office and working from home, (WFH is the new norm) desktop PCs will even further lose out in the marketplace. I guess it's called reality and not good news for the dinosaur which the desktop PC has already become or is surely heading for!Quote

24-08-2021, 01:32:40

Dawelio
Quote:
Originally Posted by Tom Sunday View Post
Per Gartner desktop PC shipments have been dropping steadily from 157 million shipped worldwide in 2010 to just 79 million in 2020. Any PC growth at all in 2020 was strictly based on the robust mobile PC market, with "mobile PCs" showing a 49% growth.
Well you gotta keep in mind that since the beginning of 2020, the pandemic certainly made a huge global impact on basically everything. So it’s not really surprising that those numbers dropped drastically during that time.Quote

24-08-2021, 16:36:59

Warchild
Quote:
Originally Posted by Dawelio View Post
Well you gotta keep in mind that since the beginning of 2020, the pandemic certainly made a huge global impact on basically everything. So it’s not really surprising that those numbers dropped drastically during that time.
Actually the impact you refer to oddly enough was that there was a global "surge" in PC hardware due to the pandemic.

More spending on GPUs, CPU, Mobo etc than compared to 2019 for example. Lock down brought about more reason for many to find something to do or spend money on when everything was shut down. The online world boomed in gamingQuote
Reply
x

Register for the OC3D Newsletter

Subscribing to the OC3D newsletter will keep you up-to-date on the latest technology reviews, competitions and goings-on at Overclock3D. We won't share your email address with ANYONE, and we will only email you with updates on site news, reviews, and competitions and you can unsubscribe easily at any time.

Simply enter your name and email address into the box below and be sure to click on the links in the confirmation emails that will arrive in your e-mail shortly after to complete the registration.

If you run into any problems, just drop us a message on the forums.