Samsung plans to mass produce 1.4nm silicon by 2027

Samsung hopes to expand its capacity by more than 3x by 2027

Samsung plans to mass produce 1.4nm silicon by 2027

Samsung details aggressive expansions plans at Foundry Forum event

Samsung hopes to become the world leader in silicon technology, setting aggressive targets for their foundry services at their 2022 Samsung Foundry Forum. 

Today, Samsung has revealed plans to start mass producing their 2nm process technology by 2025, and their 1.4nm technology by 2027. With these nodes, Samsung aims to surpass TSMC's product offerings, making them the leaders of the semiconductor manufacturing market. 

By 2027, Samsung expects that silicon for non-mobile applications (like HPC and automotive products) will account for more than 50% of its foundry portfolio. This growth will require Samsung to dramatically increase its production capabilities. For its advanced lithography nodes Samsung has confirmed that they plan to increase its manufacturing capacity by more than three times by 2027. 

Samsung's newest lithography nodes will utilise the company's gate-all-around (GAA) technology. GAA comes to Samsung's foundry offerings with their 3nm node, and their GAA technology will be further enhanced with the company's future 2nm and 1.4nm nodes. Samsung is also working on 3D packaging technologies, with their "X-Cube with microbump" technology entering mass production in 2024 and their bump-less X-Cube technology arriving in 2026.  

Below is what Samsung had to say about their foundry plans.

Samsung plans to mass produce 1.4nm silicon by 2027

Press Release - Samsung Electronics Unveils Plans for 1.4nm Process Technology and Investment for Production Capacity at Samsung Foundry Forum 2022

Samsung Electronics, a world leader in advanced semiconductor technology, announced today a strengthened business strategy for its Foundry Business with the introduction of cutting-edge technologies at its annual Samsung Foundry Forum event. With significant market growth in high-performance computing (HPC), artificial intelligence (AI), 5/6G connectivity and automotive applications, demand for advanced semiconductors has increased dramatically, making innovation in semiconductor process technology critical to the business success of foundry customers. To that end, Samsung highlighted its commitment to bringing its most advanced process technology, 1.4-nanometer (nm), for mass production in 2027.

During the event, Samsung also outlined steps its Foundry Business is taking in order to meet customers' needs, including: foundry process technology innovation, process technology optimization for each specific applications, stable production capabilities, and customized services for customers. "The technology development goal down to 1.4 nm and foundry platforms specialized for each application, together with stable supply through consistent investment are all part of Samsung's strategies to secure customers' trust and support their success," said Dr. Si-young Choi, president and head of Foundry Business at Samsung Electronics. "Realizing every customer's innovations with our partners has been at the core of our foundry service."

Samsung plans to mass produce 1.4nm silicon by 2027

Showcasing Samsung's Advanced Node Roadmap Down to 1.4 nm in 2027

With the company's success of bringing the latest 3 nm process technology to mass production, Samsung will be further enhancing gate-all-around (GAA) based technology and plans to introduce the 2 nm process in 2025 and 1.4 nm process in 2027.

While pioneering process technologies, Samsung is also accelerating the development of 2.5D/3D heterogeneous integration packaging technology to provide a total system solution in foundry services.

Through continuous innovation, its 3D packaging X-Cube with micro-bump interconnection will be ready for mass production in 2024, and bump-less X-Cube will be available in 2026.

Proportion of HPC, Automotive and 5G to be More than 50% by 2027

Samsung actively plans to target high-performance and low-power semiconductor markets such as HPC, automotive, 5G and the Internet of Things (IoT).

To better meet customers' needs, customized and tailored process nodes were introduced during this year's Foundry Forum. Samsung will enhance its GAA-based 3 nm process support for HPC and mobile, while further diversifying the 4 nm process specialized for HPC and automotive applications.

For automotive customers specifically, Samsung is currently providing embedded non-volatile memory (eNVM) solutions based on 28 nm technology. In order to support automotive-grade reliability, the company plans to further expand process nodes by launching 14 nm eNVM solutions in 2024 and adding 8 nm eNVM in the future. Samsung has been mass producing 8 nm RF following 14 nm RF, and 5 nm RF is currently in development.

Samsung plans to mass produce 1.4nm silicon by 2027

"Shell-First" Operation Strategy to Respond to Customer Needs in a Timely Manner

Samsung plans to expand its production capacity for the advanced nodes by more than three times by 2027 compared to this year.

Including the new fab under construction in Taylor, Texas, Samsung's foundry manufacturing lines are currently in five locations: Giheung, Hwaseong, and Pyeongtaek in Korea; and Austin and Taylor in the United States.

At the event, Samsung detailed its "Shell-First" strategy for capacity investment, building cleanrooms first irrespective of market conditions. With cleanrooms readily available, fab equipment can be installed later and set up flexibly as needed in line with future demand. Through the new investment strategy, Samsung will be able to better respond to customers' demands.

Investment plans in a new "Shell-First" manufacturing line in Taylor, following the first line announced last year, as well as potential expansion of Samsung's global semiconductor production network were also introduced.

Expanding the SAFE ecosystem to strengthen customized services

Following the "Samsung Foundry Forum," Samsung will hold the "SAFE Forum'"(Samsung Advanced Foundry Ecosystem) on October 4th. New foundry technologies and strategies with ecosystem partners will be introduced encompassing areas such as Electronic Design Automation (EDA), IP, Outsourced Semiconductor Assembly and Test (OSAT), Design Solution Partner (DSP) and the Cloud.

In addition to 70 partner presentations, Samsung Design Platform team leaders will introduce the possibility of applying Samsung's processes such as Design Technology Co-Optimization for GAA and 2.5D/3DIC.

As of 2022, Samsung provides more than 4,000 IPs with 56 partners, and is also cooperating with nine and 22 partners in the design solution and EDA, respectively. It also offers cloud services with nine partners and packaging services with 10 partners.

Along with its ecosystem partners, Samsung provides integrated services that support solutions from IC design to 2.5D/3D packages.

Through its robust SAFE ecosystem, Samsung plans to identify new fabless customers by strengthening customized services with improved performance, rapid delivery and price competitiveness, while actively attracting new customers such as hyperscalers and start-ups.

Starting in the United States (San Jose) on October 3rd, the "Samsung Foundry Forum" will be sequentially held in Europe (Munich, Germany) on the 7th, Japan (Tokyo) on the 18th, and Korea (Seoul) on the 20th, through which customized solutions for each region will be introduced. A recording of the event will be available online from the 21st for those who were unable to attend in person.

You can join the discussion on Samsung's foundry plans on the OC3D Forums.

«Prev 1 Next»

Most Recent Comments

x

Register for the OC3D Newsletter

Subscribing to the OC3D newsletter will keep you up-to-date on the latest technology reviews, competitions and goings-on at Overclock3D. We won't share your email address with ANYONE, and we will only email you with updates on site news, reviews, and competitions and you can unsubscribe easily at any time.

Simply enter your name and email address into the box below and be sure to click on the links in the confirmation emails that will arrive in your e-mail shortly after to complete the registration.

If you run into any problems, just drop us a message on the forums.